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SUMMARY 
In this paper we analyse numerical models for time-dependent Boussinesq equations. These equations arise 
when so-called Boussinesq terms are introduced into the shallow water equations. We use the Boussinesq 
terms proposed by Katapodes and Dingemans. These terms generalize the constant depth terms given by 
Broer. The shallow water equations are discretized by using fourth-order finite difference formulae for the 
space derivatives and a fourth-order explicit time integrator. The effect on the stability and accuracy of 
various discrete Boussinesq terms is investigated. Numerical experiments are presented in the case of a 
fourth-order Runge-Kutta time integrator. 
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1. INTRODUCTION 

Boussinesq equations describe the behaviour of fairly long, low-amplitude waves in flow models. 
The starting point is the shallow water model where terms are added which take into account the 
effects of wave dispersion. If we define the characteristic parameters 

a 2 

p:= (g) , &:=h, 

where h is the depth function and k and a are respectively the spatial frequency and amplitude of 
the waves, then these terms are O ( p +  E)  with p and E of the same order of magnitude. The order-p 
and order-e terms are respectively related to the frequency and amplitude dispersion. 

For very low frequencies O(p)-terms are negligible so that the Boussinesq model reduces to the 
shallow water model, while for very-low-amplitude waves the O( &)-terms are negligible, leading to 
the linearized wave equations. If both types of terms are neglected, then the wave equation with 
constant celerity for all waves is recovered. 

In practice, Boussinesq models represent a significant improvement over shallow water models 
because they allow (moderate) curvature of the free surface, non-depth-averaged velocities, non- 
hydrostatic pressure and wave dispersion. 
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In this paper we are concerned with the case where p and E are of magnitude at most &, so that 
frequencies and amplitudes satisfying the conditions 

should be described accurately by the Boussinesq models to be used. Frequencies less than l/h 
(say) will be considered as the relevant frequencies. 

In our analysis we concentrate on one-dimensional Boussinesq models, but the analysis can 
straightforwardly be extended to two-dimensional models. Consider the equations 

where z is the free surface elevation, u is the horizontal velocity at the free surface, h is assumed to 
be independent of t ,  g is the acceleration due to gravity and L is a linear spatial differential 
operator characterizing the particular form of the Boussinesq approximation. If L equals the 
identity operator, then (2a) reduces to the one-dimensional shallow water equations. One of the 
forms of the operator L proposed by Katopodes and Dingemans’ for describing Boussinesq 
models reads 

1 a2  1 a2  

2 ax’ 6 ax2 
L:= 1 --h-h+-h’-. 

This operator generalizes the operator used by Broer’ for the constant depth case; i.e. if h does not 
depend on x ,  then the Boussinesq model defined by (2) reduces to the model derived by Broer. 

Since we are mainly interested in the low-frequency range of the solution space of (l), the 
operator L defined by (2b) may be considered as a perturbation of the identity operator; i.e. the 
norm of the operator 1 - L is small on the space of low frequencies. This property will become 
important in designing numerical approximations to L. 

Following the method-of-lines approach, we replace the spatial domain by a discrete set of grid 
points and approximate the continuous functions u, u, z and h on these grid points by grid 
functions U ,  V, Z and H. Furthermore, the differential operator d /dx  is approximated by difference 
operators D, which are defined on the space of grid functions. In this paper we shall assume that 
the boundary conditions are given by periodicity conditions and that the spatial grid consists of 
uniformly spaced grid points j A x .  

Let L* denote a discretization of L; then we are led to a semidiscretization of (2) given by the 
system of ordinary differential equations (ODES) 

ZD, + (L*)- ’DxH 0 ”)( ;) - ...( ;). 
Since one usually wants high-order discretizations in Boussinesq models, the discretization 

stencils defining Dx are rather large. In fact, in this paper it is assumed that a fourth-order 
discretization both in time and space is desired. As a consequence, the blocks in the Jacobian 
matrix associated with the semidiscretization (2 *) contain a considerable number of non-zero 
diagonals. If implicit time integrators are used, then such Jacobian matrices imply a rather 
computationally intensive linear algebra problem for solving the implicit relations. In one spatial 
dimension this linear algebra problem does not prevent us from using implicit integrators; 
however, in two spatial dimensions explicit time integrators seem to be more attractive. Since it is 
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our aim to extend the results of this study to the two-dimensional case, we shall use explicit time 
integration methods. 

In the actual integration of the system (2*) by explicit ODE solvers, one or more right-hand- 
side evaluations of (2*) are needed in each integration step. Hence in each step the quantity 

B:= (L*)-’D,HU 

is to be computed, so that in each step we have to solve the equation 

L*B = D,HU. (3) 

L$:= I - ~ H D H + $ H ~ D ,  (4) 

The most obvious definition of L* is the difference operator 

where D denotes a discretization of the operator a2 /ax2 .  (However, we will see that the 
corresponding semidiscretization (2 *) becomes easily unstable for negative values of the eleva- 
tion, so that alternative discretizations are desirable; see Section 5.)  Putting aside the particular 
discretization we use for L, we will always be faced with the problem of solving equation (3), in 
spite of our restriction to explicit time integrators. As already observed, in one spatial dimension 
this is not a severe problem. However, in two spatial dimensions it requires special attention. 

In the remainder of this paper the following aspects will be discussed. Section 2 deals with the 
stability of the continuous problem (2) and of the semidiscretization (2*). In Section 3 the stability 
condition associated with explicit integration methods is derived. Sections 4 and 5 respectively 
treat the difference operators D, and the discretization of the operator L. Finally, in Section 6 we 
present numerical results for the case of the standard fourth-order Runge-Kutta time integrator. 

2. STABILITY 

Before selecting an ODE solver for integrating the system (2*), we investigate the stability 
properties of both the continuous problem (2) and the semidiscretization (2*). This will be done in 
the case where the depth function h is constant and with respect to the function space spanned by 
complex exponentials. 

2.1. Stability of the continuous problem 

We shall investigate the local stability of problem (2) by substituting continuous harmonic data ( r )  = a(t)exp(ikx) (5) 

into (2) at some fixed point x in the domain of definition (this is often called the method of ‘frozen 
coefficients’). Here k is the real-valued spatial frequency and a does not depend on x. We readily 
find that ( 5 )  satisfies (2) if a(t)  is a solution of the ODE 

a:= iuk, 
0 

A:= i 
d 
-a = - - a - a a ,  
dt 

where u and h are defined at the point x and where for any linear operator M ,  1(M) denotes an 
eigenvalue of M .  The eigenvalues of L can be expressed in terms of k, i.e. 
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The condition for (local) stability of the system (6) requires that the eigenvalues of the matrix 
- ( A  + aZ) are located in the non-positive half-plane. The non-trivial eigenvalues of this matrix 
are given by 

The values of l /A(-A-ctZ) are called time constants and depend on the frequency k. 
Thus we have stability if the time constants are located in the non-positive half-plane, i.e. 
Rel(- A - aZ)<O. We shall say that the problem (2) is dissipative if Rel(-A - aI)<O and 
zero-dissipative or conservative if ReA( - A  - aZ) vanishes. The following theorem is now 
immediate. 

Theorem I 

If and only if ha -zA(L), then (6) is stable and at the same time zero-dissipative. 0 

From this theorem it follows that for negative z we only have stability with respect to spatial 
frequencies satisfying the inequality -zk2 < 3 ( h  + z ) / h 2 .  For positive z this condition is always 
satisfied, but for negative z it prescribes an upper bound for the spatial frequencies. Recalling that 
the range of relevant frequencies is bounded by llh, we conclude that the relevant frequencies 
always satisfy the above stability condition. 

It may be of interest to express the stability condition of Theorem 1 in terms of the character- 
istic parameters E and ,u introduced in Section 1. Introducing the wave amplitude a: = IzlmaX, we 
find 

U h - a  3 ( 1 - & )  k 2 < 3 - = -  
ah2 Eh2 ’ &:= h’ 

and substitution of 

yields 

8 p 2  3 ( 1 - & )  
T G -  &h2 ’ 

so that the Boussinesq model (2) is stable if the solution space is restricted to frequencies for which 
&p is bounded by 3( 1 - & ) / 8 x 2  x 3/80. 

2.2. Stability of the semidiscrete problem 

point x, the harmonic data 
Following the above approach, we insert into the semidiscretization (2*) ,  at a fixed grid 

Here x j  runs through the grid points and a again only depends on t. The frequency k is restricted 
to the interval [0, a]/Ax because the grid cannot ‘resolve’ higher frequencies. In practice, 
accurate solutions can only be obtained for frequencies contained in an interval which is an order 
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of magnitude smaller, say [0,0-2]/Ax. As stated in Section 1, the relevant frequencies for the 
Boussinesq model range from zero to 1/H,  so that 1 / H  should be less than 0*2/Ax, i.e. Ax < H / 5 .  

In the following analysis it is assumed that the grid functions exp(ikxj) are eigenfunctions of 
the operators D, and L* with eigenvalues 6, and A(L*) respectively. Then the analogue of (6) 
becomes 

-a d = -A*a-a*a ,  A*:= 0 a*:= U6,. ( 6 * )  
dt 

The condition for stability of the system ( 6 * )  requires that A(-A* - a * Z )  lies in the non- 
positive half-plane. By ‘freezing’ the coefficients in (6*) ,  we find that the non-trivial eigenvalues of 
-(A* + a * I )  are given by 

As for the continuous problem, we say that the semidiscretization (2*) is dissipative if 
ReA( - A* - a * I) < 0 and zero-dissipative or conservative if Rel( - A * - a * I )  vanishes. Let 
p(L*) denote the spectral radius of L*; then the analogue of Theorem 1 becomes as follows. 

Theorem 1 * 
If the eigenvalues of the discretization D,  are purely imaginary and if the eigenvalues A( L*) are 

positive and satisfy the condition H 2 - Z p ( L * ) ,  then and only then is the semidiscretization 
0 

The condition H 2 -Zp(L*) shows that in the case of negative elevation waves the quantity 
l /p(L*) may be interpreted as an upper bound for lZ /HI .  Since lZ/HI is bounded by the 
characteristic parameter E, we conclude that l /p (L*)  should not be less than E. In order to see its 
implications, we consider the case where L* is defined by (4). Then the eigenvalues of L* are 

(6*)  stable and at the same time zero-dissipative. 

A(L,*) = 1 - $A(D)H’. 

Assuming that D has negative eigenvalues, we find 

p(L,*)  = 1 + i p ( D ) H 2 .  

Since p(  D) is usually extremely large, we see that in the case of large negative elevation waves the 
magnitude of l /p (L*)  is easily less than E. (We recall that the order of magnitude of E and p is at 
most &, so that p(L*) should not exceed 50.) In Section 5 we return to the problem of discretizing 
the operator L by better-conditioned difference operators than the operator L$ defined in (4). 

2.3. Artlfcial stabilizing terms 

In Section 2.2 we have seen that the system ( 6 * )  is stable if and only if the eigenvalues of D, and 
L* satisfy the conditions of Theorem I *  and that the corresponding time constants lie on the 
imaginary axis which separates the regions of stability and instability. This ‘marginal’ stability 
property of the semidiscretization causes a numerical integration process to become easily 
unstable. Therefore it may be necessary to stabilize the system (2*) by adding artificial stabilizing 
terms. 
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2.3.1. Artificial difusion. The most simple way to achieve additional stabilization is the 
introduction of an artificial diffusion term into (2*): 

':) ( i) - [ UD, - d(Ax)PD] 
0 

ZD,+(L*) - 'D ,H 

where d and p are positive and D denotes the discretization of the operator a2/dx2. As a result of 
this term the system is changed by a pth-order perturbation. The time constants are now given by 

A( - A *  - a*I) + AA, Ah:= d(Ax)PA(D). (7') 
Assuming that the conditions of Theorem 1 * are satisfied, these values are located on a curve in 
the left half-plane and no longer on the imaginary axis. Since AA is negative, the semidiscretization 
has become dissipative. 

2.3.2. Fischer-type semidiscretization. An alternative way to introduce dissipation is the 
following: let S denote the state vector ( U ,  2)' and write (2*) in the compact form 

d 
dt 
- S  = -QS. 

Furthermore, let the matrix operator Q be split according to Q = T +  (Q - T), where T is the 
strictly lower triangular part of Q, and define the operator P:= I + q(Ax)j'T, where q and p are 
positive. Instead of the semidiscretization (2 *) we now consider the preconditioned semi- 
discretization 

d 
dt 
- S  = - P - ' Q S  = - [ I+~T(Ax)~] - 'QS .  

Since P -  ' is triangular, the evaluation of the right-hand-side function - P -  ' QS does not require 
more computational effort than that of - QS. Evidently, this preconditioned system is an 
0 [(A~)~]-perturbation of the original system. 

The method used by Fischer3 for solving the shallow water equations can be interpreted as the 
explicit Euler method applied to the above preconditioned semidiscretization with p = q = 1 and 
Ax = At. Fischer showed that the resulting method is conditionally stable whereas application of 
explicit Euler to the original semidiscretization would lead to an unconditionally unstable 
method. The reason is of course that explicit Euler possesses an empty imaginary stability 
interval. As we shall see below, the preconditioning trick forces the time constants of the 
semidiscretization into the left half-plane, where explicit Euler has a non-empty stability region. 
Instead of using explicit Euler, one may use any ODE solver for integrating the preconditioned 
semidiscretization. We shall call this particular type of semidiscretization Fischer-type semi- 
discretization. 

It is easily verified that the time constants A(-P-'Q) associated with the Fischer-type 
semidiscretization are the roots of the equation 

H + ZA(L*) 
4 L * )  . 

(A + a*)' + yq(Ax)pI + y = 0, a*:= U6,, y :=  -96, 

Writ ingA(-P- 'Q)=i ( -A*-a*I)+Al ,  we obtain 

y q ( A ~ ) ~ 1 ( A *  +a*Z) 
A ( - P - ' Q )  = A+AA, A l  := 

2 [ - A ( A * ) +  Y~(Ax)']. (7") 
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It can be shown that Re(AA) and hence ReA(-P-lQ) is negative, so that the Fischer-type 
semidiscretization is dissipative. The advantage of the above preconditioning over adding 
artificial diffusion lies in its lower computational costs. 

3. STABILITY OF EXPLICIT TIME INTEGRATORS 

It has already been observed that we shall use explicit time integration methods for the 
integration of the semidiscrete system (2 *) in order to avoid the rather computationally intensive 
linear algebra involved in integrating (2*) by implicit methods. We also recall that we cannot 
completely avoid the solution of implicit equations because we always have to solve the system (3) 
defining the quantity B. 

3.1. Stability condition of the zero-dissipative semidiscretization 

If the conditions of Theorem 1 * are satisfied, then the time constants of the system of ODES 
(2*) are purely imaginary and (2*) is therefore stable. Hence the integration process used for 
integrating (2 *) is (linearly) stable if its time step At satisfies the stability condition 

B 
p(A* + a * I ) '  

At < 

where 
following theorem. 

is the imaginary stability boundary of the time integrator used. This leads us to the 

Theorem 2 

If the time integrator chosen for integrating (2*) has imaginary stability boundary fl and if the 
discretization D ,  has imaginary eigenvalues, then a sufficient condition for linear stability is 

0 

We remark that this condition on At reduces to the familiar stability condition for shallow 
water models if L* = 1. In order to get some insight into the actual step size limitations of this 
condition, we consider the case where L* has eigenvalues greater than or equal to unity, so that 
Z < I ((L*)-' ( H  + ZL*)) < H  + Z .  Hence 

p (D:(L*)- ( H  + Z L * ) )  < p ( D : )  p ((I,*)-' ( H  +ZL*))=  p (0:) Max { H + Z ,  1 Zl }.  

B A t <  
P(~,) l~l+J(gP(D:C(~*)- 'H+Zl)) '  

Thus we have the following corollary of Theorem 2. 

Corollary 

stability is 
If the eigenvalues of L* are greater than or equal to unity, then a sufficient condition for linear 

Notice that the operator L* does not appear in this condition. If the eigenvalues of L* are less 
than unity, then p ((L*)-' ( H  + ZL*))  > H + Z ,  leading to a smaller maximum time step. 
Furthermore, we should bear in mind that the condition of this corollary may be more restrictive 
than that of Theorem 2. 



1242 P. J. VAN DER HOUWEN, J. MOOIMAN AND F. W. WUBS 

Let us present the time step condition of the corollary in the form 

where C,  is a constant depending on the particular discretization formula used. By a judicious 
choice of the discretization D, the constant C,  can be minimized, thereby relaxing the stability 
condition. In a typical case we have 

IUI = 1 ms-’, Z=4*4m, H = 10m, g = lOms-’, Ax = 2m, 

so that the stability condition becomes 

28 A t < - .  
13Cx 

3.2. Stability condition for  the dissipative semidiscretization 

stability condition (9) is changed to (see Section 2.3.1) 
In the case where artificial diffusion is added to the dissipative semidiscretization (2 *) the 

where /I is the radius of the half-circle that can be inscribed in the stability region of the ODE 
solver used. On substitution of the numerical values given above we obtain 

PAX 
J ( [ ~ C , ( A X ) ~ - ’ ] ~  +(13C,)’}’ 

At G 

showing that for p = 4 and Ax < 2 the value d = (say) seems to be suitable in the sense that the 
denominator in (9’) is only slightly larger than that of (9) (here we assume that the constants C ,  
and CD do not differ much in magnitude). We remark that the introduction of artificial diffusion 
does not relax the stability condition, but it improves the stability behaviour of the integration 
process because of dissipation of the higher frequencies. 

4. THE OPERATOR D, 

We shall use discretizations of the symmetric form 

1 ”  
  AX j = o  

D,+- 1 d j ( E < - E i j ) .  

Here d j  are scalar weights and Ex is the shift operator in the x-direction, i.e. for any function g(x) 
we define 

E,g(x, y):= g(x + AX) .  (lob) 
It is sometimes convenient to present the difference operator D, by so-called stencils (or 
molecples). For example, for m = 3 such a stencil is given by 
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We shall call m the dimension of the discretization stencil. For the general difference operator of 
the type (10) we have the following theorem. 

Theorem 3 

The following assertions hold. 

(a) The eigenvalues of D ,  are purely imaginary. 
(b) The spectral radius of D, is given by p(D,) = C,/Ax, where 

m 

c(P):= 1 d,sin(jp), 
j = o  

c, G 2 II C(P) 11, 

with 11 * 11 denoting the maximal norm with respect to all values of p and q. 
(c) The discretization (10) is fourth-order-accurate if 

rn rn 

j = O  j = O  
C 2jdj = 1, C j3dj = 0. 

Proof. (a) Since 

Ex exp(i kxj) = eiP exp(i kxj), p:= k,Ax, 

we find that 

2i rn 
D,exp(ikxj) = 6,exp(ikxj), 6, = 6 , ( p )  = - C djsin(jp), AX j = o  

showing that exp(ikxj) is an eigenfunction of D,  with purely imaginary eigenvalues 6,. 
(b) This estimate is immediate from the expression for 6,. 
(c) Let g(x) be a sufficiently differentiable function; then we can write 

sinh(jx) 
X ( X ,  y):= 2 1 dj-. 

j = O  X 

It is straightforwardly verified that 
rn 

j = O  
X ( x )  = C (2j+4j3xz)dj+O(x4), 

from which the theorem is immediate. 0 

By means of this theorem, fourth-order difference operators D, can straightforwardly be 
constructed. However, because the actual implementation of these operators will be based on 
staggered grids (i.e. the components of U and Z will be computed at distinct grid points), we shall 
distinguish two special cases: 

(i) m = 2, no restrictions on the weights d j  
(ii) m = 3, dj  = 0 if j is odd. 

In the first case we deduce from Theorem 2 that fourth-order accuracy is possible for m = 2. This 
leads to the conventional four-point ‘line’ discretization 

(14) 
1 

12Ax D,:=-Il -8 0 8 -11, with C, = 1.37149.. . . 
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On staggered grids we need discretizations of D ,  with m = 3 and d j  = 0 ifj is odd. This leads to 
the conventional four-point ‘line’ discretization 

1 
48Ax 

D x + - l l  0 -27 0 27 0 - 11, with C ,  = 2. ( 1 4 ’ )  

5. THE OPERATOR L* 

In Section 2.2 (Theorem 1 *) it was shown that the discretization L* of the operator L should 
satisfy the condition H 2 - Z p ( L * )  in order to achieve stability, i.e. in the case of negative 
elevation waves l / p (L*)  should not be less than the parameter E characterizing the Boussinesq 
model. We recall that the ‘natural’ discretization L,* defined by (4) may lead to severe restrictions 
on IZ/H I. In this section we therefore consider alternative discretizations which are in fact 
approximations to L: with reduced spectral radius. We shall discuss ‘low-frequency’ approxima- 
tions to L,* and preconditioning (or smoothing) of the operator L,*. In both cases the spectral 
radius of the resulting operator L* is reduced considerably while the whole spectrum is bounded 
below by unity. Of course, the defect L* - L,* should be small for accuracy reasons. In order to 
measure this defect, we consider the quantity 

6 ( k ) : =  (L* - L,*)exp(ikxj) = A(L*) - I(L,*) (15) 
as a function of k. Since we are only interested in the lower frequencies, i.e. k in the interval 
[O,  n J 2 / 5 H ]  (see ( l ) ) ,  it is justified to restrict our considerations to this range of low frequencies. 
Let )I 11 denote the maximum norm with respect to all frequencies less than ko;  then we define 

A(ko):= Il6(k)ll (16) 
as a measure for the-low frequency defect. 

5.1. Low-frequency approximations to L,* 

Consider the operator 

L* = L*(w,O):= ( Z + w H D H - 8 H 2 D ) - 1 [ Z - ~ ( 1  - 2 w ) H D H + b ( l  - 6 8 ) H Z D ] ,  (17) 
where o and 8 are free parameters (notice that L*(w, 0) = L,* for w = 0 = 0). 

First we derive an expression for the spectral radius of L*. It is readily verified that in the 
constant coefficient case the eigenvalues‘ of L* corresponding to the eigenfunctions exp( i kx) are 
given by 

1 - (8 - 0 + + ) A ( D ) H Z  qL*) =l(L*(o, 8))= 
1 - ( O - o ) l ( D ) H 2  ’ 

so that 

- (8  - O ) [ A ( D ) H ~ ] *  
3 [ 1  - ( O - w ) A ( D ) H z ] ’  

6 ( k )  = A(L*) - A(L,*) = 

where A ( D )  denotes the eigenvalues of the discretization of the operator dz/axz. Using staggered 
grids, we define the operator D by the fourth-order-accurate difference formula 

( - 1  0 16 0 -30 0 16 0 -11. 
1 D = -  

4 8 ( A ~ ) ~  
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We find that the eigenvalues of D are given by 

A(D) = (2Ax)-’d(<), d (  5):= - 5 - &y, t:= 4sin2(k,Ax), (194 

so that 0 < 5 < 4 and 

4 
  AX)" = ~ 

Because D has negative eigenvalues, the expression for I(L*)  shows that 1(L*(w, 0)) is bounded 
be lowbyuni ty i f8-w>O.For8-w>Owef ind  

Next we compute the defect 

Let k be less than k,; then the variable < is bounded by 2[ 1 - cos(k,Ax)]. Hence, by taking the 
maximum norm with respect to this range of 5-values, we obtain 

Hence 

4(e - o ) ( ~ k , ) ~  
as k,Ax -+ 0, 

A ( k o ) x  /3c1 +2(0-w)(Hko)Z] 

showing that for the relevant frequencies k < k, x 1/H the defect is bounded by 

4(0-w)/[3 +6(8-w)]. 

Thirdly we consider the system (3) for computing the quantity B in the case of (17): 

[Z-$(1-2o)HDH+:(l -68)H2D]B = ( Z + w H D H - B H 2 D ) D , H U .  

In general, solving this system has the same computational complexity as that of the system 
arising for L* = L,* (o = 8 = 0). The values w = 3 and 0 = & seem to be of interest because B is 
then explicitly defined. However, since 0 - o should be non-negative, this choice is excluded. 
Another attractive choice which does preserve stability is o = 0 and 8 = i ,  leading to 

( I  - * H D H ) B  = ( I  - & H z D ) D , H V .  

Next we compute in the case 8 - o = d the spectral radius p ( L * )  and the defect A(ko) for a few 
values of Q and ko. Furthermore, as a reference, we also list the values of p(L,*). Table I clearly 
demonstrates the considerable reduction of the spectral radius by using low-frequency approx- 
imations to the operator L,*. Since stability requires that p(L*) should be less than I/& (see 
Section 2.2), we conclude that in the range 3 < Q < 13 the discretization L*(0, 0 - 6) allows 
waves with &-values as large as 033, whereas the discretization L,* = L*(O, 0) allows waves with 
&-values varying from 0.06 to 0.0033. However, Table I also shows that the defect in the range of 
relevant frequencies is rather large and cannot be improved by decreasing Ax. 
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Table I. Spectral radius and defect of the operator L* defined by (17) for 0 - o = a 

~ ~~~~ 

P ( G )  17.0 4 5 4  88.1 145.0 216.1 301.4 oc, 
2.78 2.9 1 2-96 2.97 2.98 2-99 3.0 

0.03 0.03 
P(L*) 

0.03 0.03 0.03 0.03 0.03 
0.05 0.05 0.05 0.05 0.05 0.05 0.05 

A(n J2/5H) 

053 053 
A( 1/H) 
W / H )  0.53 0.53 053 053 053 

Finally we derive the time step condition according to Theorem 2 in the case 8 - o = &with D, 
defined by (14'). We deduce from (13) that 

A(D:) = (S,)2 = -(2A~)'5(1 +A()', 
where 5 is defined as before. A comparison with A ( D )  defined in (19a) reveals that 

- 5' A ( D 3  - A ( D )  - 
4 D )  48( 12 + 5 ) '  

showing that we may replace A(D,') by A ( D )  without introducing large errors. Hence 

1 - J.(D)H2/6 H + Z ) .  1 - A(D)H*/2 
A(D:(L*)-' (H+ZL*))=A(D(L*)-' ( H +  ZL*))= A ( D )  

It can be shown that this expression is monotone in A(D),  so that it follows from (19b) that 

4 
H + Z )  = s ( a x ) ~ ( H  + 3 2 ) .  p (D:( L*)- 1 (H + Z L * ) ) z  

Upon substitution into the condition of Theorem 2 we obtain 

At 6 6pAx 

We remark that the Corollary of Theorem 2 would result in the more restrictive condition 
71 U I  + ~ J C B ( H  + 3211 * 

5.2. Preconditioning of L$ 

preceding subsection but at the cost of larger p (  L*)-values. 
The preconditioned discretizations of this subsection possess a smaller defect than those of the 

Consider the discretization 

(23) 
H 

2Ax' 
Q:= - L* = SLX, S:= (I + 4Q2Ds)- ' ,  

where q is a free parameter and D, is a difference operator. The system (3) that has to be solved in 
each call of the right-hand side of the semidiscretization (2*) now assumes the form 

L,*B = (1 + qQ2Ds)D,HU, (24) 
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showing that the computational complexity is hardly increased by introducing the precondi- 
tioner S. 

Let the operator D be defined by the fourth-order line molecule given by (18) and let Ds be 
defined by 

(25) D, = la, 0 Q, 0 1 0 a, 0 a2 I. 
The eigenvalues of D (with respect to the eigenfunctions exp(ikx)) are given by 

4 D )  = (Ax)-245)> 4 5 ) : =  - ( 5  +M2b c:= 2[ 1 - cos(2kAx)l. (26) 

Hence the eigenvalues of L* can be expressed as 

and the defect function becomes 

where 

A(Ds)=(2a, + 2 a , + 1 ) + ( - ~ , - 4 a , ) ( + a , ~ ~ .  

Suppose that we choose the parameters in (25) such that the first two terms in I (D , )  vanish, 
i.e. Q, = -3  and a, = i; then 

D s = i I l  0 -4  0 6 0 -4 0 11, 

From these expressions it can be derived that I (L*)  is never less than unity if q assumes values in 
the range [i, $1 and that in this range of q-values the magnitude of p(L*)  is minimized for q = 3. 
Introducing the new variable x = (Q, we may write 

36 + 12xQ + x2 - 2x2 
I(L*) = 6 ( k )  = (1 + 4xQ + &x2), 

36+4x2 ’ 18 + 2x2 
0 < x  < 4Q. (28) 

For larger values of Q the spectrum function A(L*) behaves as 3xQ/(9 + x’), which assumes its 
maximum at the point x = 3, so that p(L*) x Q/2. From this result the analogue of Table I 
becomes Table 11. 

Table 11. Spectral radius and defect of the operator L* defined by (23) and (25) with 
a, = -2 2 3,  a, = f and q = 3 

Q = HJ2x: 3 5 7 9 11 13 CO 

P(L3 17.0 45.4 88.1 145.0 216.1 301.4 co 
P(L*) 2.17 3.15 4.14 5.14 6.06 7.11 co 

A(  VH)  0.16 0.006 0.003 0.002 0.001 0.001 0 
W / H )  0.36 0.15 0.08 0.05 0034 0.024 0 

A( .J 2 /5H)  001 0003 0.002 0001 0-001 0~001 0 
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Finally we derive the stability condition according to Theorem 2. From (28) we obtain in terms 
of x 

A(Di[(L*)-'H+Z]) = -(Ax)-2 (X.-")( Q 12Q2 36+12xQ+x2 36 + 4x2 H + Z ) ,  

which assumes its maximum value at x = 4Q. Hence p[(L*)-'] x 1 and Theorem 2 yields the 
same condition as stated in the Corollary, i.e. condition (22'). 

6. NUMERICAL EXPERIMENTS 

In order to test the theory developed in this paper, we add to the right-hand side of equation (2a) 
some source function such that a prescribed function is identical to the exact solution. This 
enables us to determine the accuracy of the numerical solutions. Let us first rewrite (2a) in the 
form 

0 
Lza/ax + (a/ax)h o 

Then, by introducing the source function s(x, t), we obtain 

0 (:) - ( Lu(a/ax)z u(a/ax)u ) + ( ~ ~ { ~ ~  ii). (29) 

By prescribing the exact solution u(x, t)  and z(x, t), we deduce from (29) that the corresponding 
source function s(x, t )  is defined by 

Lzalax + (a/ax)h o 

a a a 
at ax ax s1 (x, t ) = - u + g - z + u - u, 

In our numerical experiments we always prescribed the exact solution 

47t 27t 
T 

c = - 
b2 ' d = -, (31) u(x, t )  = -sin(cx2)sin(dt), z(x, t) = cos(cx2)cos(dt), 

where [0, b] is the spatial domain and [0, T] is the integration interval. 

each integration step the equation (cf. (3)) 
As a consequence of the introduction of the source function s(x, t ) ,  we now have to solve in 

L*B = D,HU - S , ,  (32) 
where S, is the discretization of s,(x, t ) ,  

Equation (29) was discretized using the staggered grid difference approximation (14') on a 
uniform grid with mesh size Ax. The operator L defined in (2b) was discretized according to 
formula (17) with o = 0 and 0 = and according to (23) and (25) with a, = %, a, = & and q = 5. 
The time integration was performed using the standard fourth-order Runge-Kutta method with 
constant step size At. 

Since the imaginary stability boundary of the standard Runge-Kutta method is given by 2 J2, 
the stability conditions (22) and (22') take respectively the form 
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In view of Theorem 1 *, there is an additional stability condition reading 

H 2  -Zp(L*), (34) 
where p(L*)  is given in Tables I and I1 depending on the discretization used for L. 

In the tables of results we have listed the accuracy obtained at the end point t = T. The 
accuracy is measured by the number of correct decimal digits, i.e. by writing the elevation error in 
the form 

IZ(Xj, T) - Z(Xj, T)I = 10-4 (35) 

6.1. Constant depth function 

In our first test the following input data were used: 

domain of definition 0 < x < b:= 1000, 0 < t 6 T:= 60; 
initial values u(x, 0) = 0, z(x, 0) = cos(cx2); 
boundary values 
coefficient functions g = 9-81, h ( x )  = lo; 
source function 

u(0, t )  = u(b ,  t)  = 0; 

sl(x, t )  = -sin(cx2)[(d + 2gcx)cos (d t ) -2cxcos (cx2) s in2(d t ) ] ,  
s2(x, t )  = -sin(dt){(d + 2hcx)cos(cx2) + 2cx[cos2(cx2) 

-sin2(cx2)] cos(dt)-$cdh2 [sin(cx2) + 2cx2 cos(cx2)] 
- Y c 2 x h 2  [ 3 cos(cx2) sin(cx2) + 2cx2 [cos( cx2) 
-sin(cx2)]cos(dt)}; 

mesh size AX = 1. 

For these data we found that the operator LX leads to instabilities irrespective the value of At. 
The reason is that the stability condition (34) is violated. However, when using the operators 
defined by (17) and (23), (25), this condition is always satisfied; hence the step size condition (33) 

Table 111. Values of the number of correct digits of Z at T = 60 for discretization (17) with w = 0 and 
e = $  

At x = bJ8 x = 2bJ8 x = 3618 x = 4618 x = SbJ8 x = 6bJ8 x = 7bJ8 

0.1 2.1 3.2 1.9 1.8 1 *9 2.5 1.8 
0.2 2- 1 2.8 1.9 1 *8 1.9 2.8 1.8 
0.3 2.1 2.6 1.9 1.8 1.9 3.6 1.8 
0.4 2.1 2.4 1.9 1-8 1.9 3.0 1.8 
0 5  * * * * * * * 

Table IV. Values of the number of correct digits of Z at T = 60 for discretization (23) and (25) with 
a,  = $, a, = and q = $ 

At x = bJ8 x = 2bJ8 x = 3618 x = 4b/8 x = 5b/8 x = 6b/8 x = 7b/8 

0.1 2.1 3.2 1.9 1.8 1.9 2 5  1.8 
0 2  2.1 2.8 1.9 1-8 1.9 2.8 1-8 
0.3 * * * * * * * 
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completely determines the stability. Since the maximal numerical values assumed by IZI and I UJ 
are approximately unity, we may expect the results to be stable if respectively At < 0.32 and 
At < 0.21. We obtained the results listed in the Tables I11 and IV (* indicates instability). 
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